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ASCoT Project (1998-2002)

Aerospace Systems (Concept to Test)
Project Vision

Physics-based modeling and simulation with sufficient speed and accuracy for
validation and certification of advanced aerospace vehicle design in less than 1 year

Project Goal
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Objective

» Develop fast, accurate, and reliable
analysis and design tools via |
fundamental technological advances in: Computational ‘4 #* Computational

- Physics-Based Flow Modeling Aeroelasticity Electromagnetics

- Fast, Adaptive, Aerospace Tools
(CFD)

- Ground-to-Flight Scaling

- Time-Dependent Methods

- Design for Quiet

- Risk-Based Design w/ CFD & CSM

Benefit
 Increased Design Confidence
 Reduced Development Time
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Assumptions

Only input parameter uncertainties contribute to
output uncertainties; i.e., other uncertainty sources not
considered

Input parameters are

— Statistically independent

— Random

— Normally distributed with

« Mean values, b;
e Standard deviations, o



1st and 2nd- Order Taylor Series
Approximations for Output F(b)

., dF
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where all derivatives are evaluated at the mean values, b.

e Note that efticient first- and second-derivatives are needed
from CFD codes



Approximate Mean and Variance
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Quasi 1-D Euler Problem

Subsonic Nozzle Flow

Input Random Variables: CFD Output Function:
Geometric b={a,b} F={M}
Flow b={Minf, Pb}
L

Pb = Static Back
Minf = Pressure
Free Stream
Mach Number Inflow — Outflow

M = Mach Number at
Nozzle Inlet




Comparison of Statistical Approximations
vs. Monte Carlo Simulation

Geometric Example Flow Parameter Example
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* For larger values of input parameters, second-order
generally gives better predictions

« Approximations predict first moment more
accurately than second moment



Probability Density Functions from Monte Carlo
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e The Monte Carlo simulation histograms are compared with a normal
distribution using the mean & standard deviation from the Monte Carlo
simulations (graphically indistinguishable from FOSM & SOSM)

« The FOSM & SOSM results appear adequate for robust design but not
for reliability-based design



Robust Optimization

Objective function uncertain due to uncertain input variables
g(F,Q,b)+20, < 0

min Obj, Obj=O0bj(F,c,,Q,b)
subject t0  R(@,b)=0

g(F,Q,b)+ko, < 0

* ko, represents the desired

safety factor for probabilistic
constraint satisfaction




Robust Shape Optimization Results,
Increasing o, P, = P, = 84.13%
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Conclusions
(from present initial results)

« Demonstrated implementations of second moment
approximate statistical method for input uncertainty
propagation and gradient-based robust design in CFD

o Second-moment method appears applicable for robust
design at reasonable uncertainty levels in random input
parameters

* Propagated uncertainty appears as a probabilistic
“safety factor” on constraints; when active, these
constraints influence the optimization more than the
propagated uncertainty appearing in the objective
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